Kule osadzone w ośmiościanie foremnym są wyzwaniem dla miłośników geometrii. Zobacz, jak wyglądają, i rozwiąż kilka zadań.
Wszystko będzie się działo w ośmiościanie foremnym ABCDEF
o krawędziach długości a = 1.
Warto zauważyć, że można przyjąć:
A(a/, 0, 0),
B(0, a/, 0),
C(-a/, 0, 0),
D(0, -a/, 0),
E(0, 0, a/),
F(0, 0, -a/),
albo
A(a/2, a/2, 0),
B(-a/2, a/2, 0),
C(-a/2, -a/2, 0),
D(a/2, -a/2, 0),
E(0, 0, a/),
F(0, 0, -a/).
Zadanie (1).
W ośmiościanie foremnym o krawędzi a = 1
rozmieszczonych jest 6 jednakowych kul, po jednej w każdym narożu ośmiościanu. Każda jest styczna do ścian schodzących się w tym narożu i styczna zewnętrznie do sąsiednich kul (jak pokazano na rysunku). a)
Wyznacz długość promieni tych kul.
b)
Wyznacz promień największej kuli o środku w środku ośmiościanu, która mieści się pomiędzy tymi kulami (tzn. jest styczna zewnętrznie do wszystkich kul).
Rysunek 3D
Można chwycić myszką i obracać
przezroczystość:
Zadanie (2).
W ośmiościanie foremnym o krawędzi a = 1
rozmieszczonych jest 8 jednakowych kul, po jednej przy każdej ścianie. Każda kula jest styczna do innej ściany i styczna zewnętrznie do sąsiednich kul (jak pokazano na rysunku). a)
Wyznacz długość promieni tych kul. b)
Wyznacz promień największej kuli o środku w środku ośmiościanu, która mieści się pomiędzy tymi kulami (tzn. jest styczna zewnętrznie do wszystkich kul).
Rysunek 3D
Można chwycić myszką i obracać
przezroczystość:
Zadanie (3).
W ośmiościanie foremnym o krawędzi a = 1
rozmieszczonych jest 12 jednakowych kul, po jednej przy każdej krawędzi.Każda kula jest styczna do ścian schodzących się w tej krawędzi i jest styczna zewnętrznie do sąsiednich kul (jak pokazano na rysunku). a)
Wyznacz długość promieni tych kul. b)
Wyznacz promień największej kuli o środku w środku ośmiościanu, która mieści się pomiędzy tymi kulami (tzn. jest styczna zewnętrznie do wszystkich kul).
Rysunek 3D
Można chwycić myszką i obracać
przezroczystość:
Do dalszej lektury zapraszamy tych Czytelników, którzy rozwiązali chociaż jeden podpunkt któregoś z powyższych zadań
Zgrabne rozwiązanie powyższych zadań oparte jest
na dwóch obserwacjach.
Można pomyśleć, że kule z zadań (1), (2), (3) 'wyrosły' tak, że
ich 'nasionka' włożono:
(1) w wierzchołki ośmiościanu,
(2) w środki ścian ośmiościanu,
(3) w środki krawędzi ośmiościanu.
Potem je 'podlewano', więc rosły i rosły, wpychane w głąb ośmiościanu przez jego ściany.
Rosły tak do momentu, gdy miały miejsce, czyli do chwili, gdy spotkały się z innymi kulami.
'Filmy dokumentujące 'hodowlę' kul z zadań (1), (2), (3).
A teraz najważniejsze.
Wyobraźmy sobie, co by było, gdyby kule rosły dalej,
gdyby nie zatrzymało ich wzrostu spotkanie z innymi kulami,
gdyby się przenikały nawzajem, gdyby jedyną barierą dla nich były ściany ośmiościanu.
Poniższe 'filmy' pokazują taki właśnie wzrost pojedynczej kuli.
0.05
0.05
0.05
A tak wyglądałby wzrost wszystkich kul.
0.05
0.05
0.05
W każdym przypadku kule rosną tak długo, aż pokryją się z kulą K wpisaną w ośmiościan ABCDEF.
Puszczając te 'filmy' w drugą stronę, zauważamy kluczową sprawę.
Kule z zadań (1), (2), (3) są kopiami (obrazami) kuli K,
utworzonymi przez jednokładności o środkach w:
(1) wierzchołkach ośmiościanu,
(2) w środkach ścian ośmiościanu,
(3) w środkach krawędzi ośmiościanu.
(Przy czym w poszczególnych zadaniach: (1), (2), (3),
jednokładności mają tą samą skalę.)
Dalej potrzebna jest jeszcze jedna obserwacja.
Styczność kul opisanych w zadaniach (1), (2), (3) ilustruje poniższy rysunek, w którym zbadamy tylko jedną (dowolną) parę takich kul:
- punkty S', S'' są środkami dwóch stycznych kul o (nieznanym) promieniu x,
- punkt O jest środkiem kuli K wpisanej w ośmiościan (r oznacza promień K),
- punkty P', P'' są środkami jednokładności dla tych kul (tam 'zasadzono' te kule), czyli
w zadaniu (1) są to pewne dwa sąsiednie wierzchołki ośmiościanu,
w zadaniu (2) są to środki dwóch sąsiadujących ścian ośmiościanu,
w zadaniu (3) są to środki dwóch boków pewnej ściany ośmiościanu.
skala0.55
Z własności jednokładności mamy:
x / r = P'S' / P'O .
Styczność kul daje nam:
x / P'M = S'O / P'O .
Prawe strony sumują się do 1, czyli
x / r + x / P'M = 1 ,
skąd
x = 1 /
( 1/r + 1/P'M ) .
Ostatecznie:
x = 1 / ( 1/r + 2/P'P'' ) ,
Ten wzór jest już właściwie rozwiązaniem podpunktów a) powyższych zadań.Wystarczy bowiem obliczyć r i w poszczególnych zadaniach znaleźć P'P'' (co zostawiamy Czytelnikowi).
Podpunkty b) też można rozwiązać jednym wzorem, patrząc na powyższy rysunek (co również zostawiamy Czytelnikowi).
Podczas wakacji rozgrywane są olimpiady międzynarodowe: Matema-tyczna w Australii, Informatyczna w Boliwii, Lingwistyczna na Tajwanie, Sztucznej Inteligencji w Chinach.
Czy podczas wakacyjnych wędrówek odkryliście jakąś atrakcję turystyczną związaną z matematyką? Pomnik, tablicę pamiątkową, kawiarnię, w której sformułowano słynne twierdzenie, ławeczkę z wyciętym wzorem, miejsce urodzenia, dom rodzinny lub grób jakiegoś znanego matematyka? Napiszcie, prześlijcie zdjęcie oraz lokalizację na adres mikolaj@math.uni.wroc.pl. Opublikujemy Wasz tekst na Portalu, aby i inni mogli to miejsce odwiedzić!
Zagadka miesiąca
Co to za matematyk?
Bohater miesiąca
Matematyk przedstawiony w zagadce powyżej był bliskim przyjacielem sir Isaaka Newtona, zręcznym menadże-rem kopalni ołowiu, wynalazcą, jednym z ojców rewolucji przemysło-wej w Szkocji. Od jego nazwiska nazwano silnik, liczby oraz wzór.
Arcydzieło miesiąca
A ten gustowny czajnik do herbaty otrzymał od władz pewnego szkockiego miasta. Jest to (jak głosi grawerunek): A compliment made by the Town Council of Glasgow to X - mathematician - for his services, pains, and trouble in surveying the River towards deepening it by locks. 1st July 1752 Czajnik jest do dziś własnością rodziny. Jego koszt (co skrupulatnie odnotował skarbnik miasta) wyniósł £28, 4s. 4d. Czyli ile? Prezent został sfinansowany z pier-wszej raty kredytu, jaki w wysokości 10 mln. funtów miasto zaciągnęło na budowę portu morskiego (co wyma-gało m.in. pogłębienia rzeki Clyde).